ABSTRAK

Dewasa ini baja sudah mulai banyak digunakan dalam konstruksi bangunan di Indonesia, hal ini mendorong perencanaan desain konstruksi baja yang semakin berkembang terutama dengan dikeluarkannya peraturan konstruksi baja yang menjadi standar acuan di Indonesia, yaitu SNI 03-1729-2002. Pada dasarnya menggunakan prinsip Load and Resistance Factor Desain (LRFD). LRFD menggunakan faktor beban dan faktor reduksi, dimana faktor-faktor beban yang digunakan dapat memperjelas derajat perbedaan ketidakpastian dan variabel di lapangan.

Perhitungan tahanan lentur nominal dihitung menggunakan Microsoft Excel dengan mutu baja fy 240 MPa dan 410 MPa pada bentang 0 - 6 meter. Hasil perhitungan dari excel dibuat alat bantu perencanaan lentur dengan menggunakan program Micosoft Visual Basic 6.0.

Dari hasil perhitungan ini didapat grafik tahanan lentur nominal profil WF dan alat bantu perencanaan lentur pada profil WF dalam bentuk aplikasi exe.

Kata Kunci : LRFD, beban, lentur, alat bantu, visual basic.

ABSTRACT

Today, steel has been widely used in building construction in Indonesia, This encourages planning design steel construction is growing, especially when the rule of steel namely SNI 03-1729-2002, has been released. SNI 03-1729-2002 is a standart reference for design of steel construction in Indonesia. The standart basically use the principle of Load and Resistance Factor Desain (LRFD). LRFD use load factor and reduction factor, where the factors are used for uncertainty and variables in field.

Calculation of the nominal flexural resistance was calculated using the Microsoft Excel which fy (yield strength) 240 MPa and 410 Mpa with span 0-6 meter. The results of excel has been made a tool of bending planning by using Microsoft Visual Basic 6.0.

The results of these calculations are obtained graphs nominal bending for WF profiles and planning tool for WF profiles in the form exe application.

Keyword : LRFD, load, bending, tool, visual basic.

KATA PENGANTAR

Puji syukur dipanjatkan kehadirat Allah SWT, karena hanya dengan izinNyalah kami mendapat kekuatan lahir dan bathin serta memperoleh petunjuk sehingga penyusunan Skripsi ini dapat dirampungkan.

Penyusunan Skripsi ini dengan judul "Alat Bantu Perencanaan Lentur Profil Baja WF berdasarkan SNI 03-1729-2002", merupakan salah satu syarat akademis untuk menyelesaikan studi di Fakultas Teknik Universitas Negeri Gorontalo.

Tugas Akhir ini terselesaikan atas bantuan, motivasi dan bimbingan dari berbagai pihak. Untuk itu penulis dengan tulus menyampaikan terima kasih yang sebesar-besarnya kepada Ibu Rahmani Kadarningsih, S.T., M.T. dan Bapak Arif Supriyatno, S.T., M.T. yang telah membimbing penulis dalam penyelesaian Skripsi ini, serta Bapak Rifadli Bahsuan, S.T., M.T. dan Bapak Kasmat Saleh Nur, S.T., M.Eng., yang telah banyak berperan dalam memberikan pemikiran dan arahan dalam penyusunan Skripsi ini. Ucapan terima kasih juga kepada semua pihak yang terkait dalam penyelesaian Skripsi ini.

Semoga Allah SWT melimpahkan rahmat, taufik dan hidayah-Nya kepada kita sekalian. Amin.....

Gorontalo, Februari 2013

Penulis

DAFTAR ISI

Halaman

Abstraki				
Abstractii				
Kata Pengantariii				
Daftar Isiiv				
Daftar Gambarvi				
Daftar Tabelviii				
Daftar Notasiix				
BAB I PENDAHULUAN				
1.1. Latar Belakang Masalah1				
1.2. Perumususan Masalah2				
1.3. Maksud dan Tujuan Penulisan				
1.4. Pembatasan Masalah2				
BAB II TINJAUAN PUSTAKA				
2.1. Umum				
2.2. Sifat Baja				
2.3. Perilaku Baja pada Temperatur Tinggi6				
2.4. Desain LRFD Struktur Baja9				
2.4.1.Faktor Beban dan Kombinasi Beban				
2.4.2.Faktor Tahanan 11				
2.5. Komponen Struktur Lentur 11				
2.5.1.Lentur Sederhana Profil Simetris				
2.5.2. Perilaku Balok Terkekang Lateral				
2.6. Tekuk Torsi Lateral 17				
2.6.1.Perilaku Balok I Akibat Momen Seragam 17				

2.6.2. Tekuk Torsi Inelastis	20
2.6.3.Desain LRFD Balok I	21
2.7. Microsoft Visual Basic	25
2.7.1. Mengenal Integrated Development Environment	(IDE)
VB6	26
2.7.2. Menggunakan Event dan Property	28
2.7.2.1. Membuat User Interface (UI)	28
2.7.2.2. Mengatur Property Object	29
2.7.2.3. Menulis Kode Program	29
2.7.3.Penggunaan Struktur Kontrol IF	31
2.7.3.1. Mengenal Struktur Kontrol	31
BAB III METODOLOGI	32
3.1. Data Perhitungan	34
3.2. Tahanan Lentur Nominal	34
3.3. Penampang Kompak	35
3.4. Cek Stabilitas Lateral	35
3.5. Membuat Tabel dan Grafik	36
3.6. Visual Basic	36
3.6.1.Penggunaan Struktur Kontrol <i>IF</i>	37
BAB IV HASIL DAN PEMBAHASAN	39
4.1. Data	39
4.2. Alat Bantu dengan Program Visual Basic	46
4.3. Validasi Alat Bantu	48
BAB V PENUTUP	52
5.1. Kesimpulan	52
5.2. Saran	52
DAFTAR PUSTAKA	

LAMPIRAN-LAMPIRAN

DAFTAR GAMBAR

Gambar 2.1 Diagram Tegangan-Regangan Tulangan Baja5
Gambar 2.2 Efek Kenaikan Temperatur terhadap Sifat-sifat Mekanik Material
Baja8
Gambar 2.3 Modulus Penampang Berbagai Tipe Profil Simetri
Gambar 2.4 Distribusi Tegangan pada Level Beban Berbeda
Gambar 2.5 Diagram Tegangan-Regangan Material Baja 14
Gambar 2.6 Sendi Plastis dan Kurva M- Θ 15
Gambar 2.7 Tahanan Momen Nominal Penampang Kompak dan Tak Kompak 16
Gambar 2.8 Balok Terkekang Lateral pada Ujung-ujungnya 18
Gambar 2.9 Balok dengan Beban Momen Konstan tanpa Kekangan Lateral 19
Gambar 2.10 Hubungan Deformasi dengan Momen Plastis, Mp20
Gambar 2.11 Kuat Momen Lentur Nominal akibat Tekuk Torsi Lateral
Gambar 2.12 Jendela Awal ketika Microsoft Visual Basic diaktifkan26
Gambar 2.13 Tampilan Area Kerja Microsoft Visual Basic
Gambar 2.14 ToolBox pada Visual Basic 6.0
Gambar 2.15 Tampilan Form
Gambar 2.16 Tampilan Properties Form 1
Gambar 2.17 Perintah pada Properties dan Value
Gambar 2.18 Tampilan Property Test
Gambar 2.19 Tampilan Code pada Visual Basic 6.0

Gambar 4.1.a Tahanan Lentur Nominal untuk fy 240 MPa	40
Gambar 4.1.b Tahanan Lentur Nominal untuk f_y 240 MPa	41
Gambar 4.1.c Tahanan Lentur Nominal untuk fy 240 MPa	42
Gambar 4.2.a Tahanan Lentur Nominal untuk f_y 240 MPa	43
Gambar 4.2.b Tahanan Lentur Nominal untuk f_y 240 MPa	44
Gambar 4.2.c Tahanan Lentur Nominal untuk fy 240 MPa	45
Gambar 4.3 Tampilan desain Alat Bantu	46
Gambar 4.4 Tampilan Grafik Tahanan Lentur pada Visual Basic	47
Gambar 4.5 Tampilan Jendela Project1 Properties pada Visual Basic	47
Gambar 4.6 Menu Penyimpanan Alat Bantu dalam Bentuk Exe	48

DAFTAR TABEL

Tabel 2.1 Harga Tegangan Leleh
Tabel 2.2 Hubungan Kombinasi Beban dengan Indeks Keandalan 10
Tabel 2.3 Batasan Rasio Kelangsingan λ_p untuk Penampang Kompak Balok I . 22
Tabel 2.4 Batasan Rasio Kelangsingan λ_r untuk Penampang Tak Kompak Balok
I

DAFTAR NOTASI

E	= Modulus elastisitas baja
L	= Panjang batang
L_{pd}	= Batas panjang bagian pelat sayap tekan tanpa pengekang lateral
L_p	 Panjang bentang maksimum untuk balok yang mampu menerima momen plastis
L _r	= Panjang bentang minimum untuk balok yang kekuatannya mulai ditentukan oleh momen kritis tekuk torsi lateral
b	= Lebar pelat atau penampang
b_f	= Lebar pelat sayap
h	= Tinggi bersih balok
t_f	= Tebal pelat sayap
t_w	= Tebal pelat badan
λ	= Kelangsingan
λ_p	= Batas maksimum untuk penampang kompak
λ_r	= Batas maksimum untuk penampang tak-kompak
r_y	= Jari-jari girasi
А	= Luas penampang
f	= Tegangan lentur
M_x, M_y	= Momen lentur arah x, y
S_x, S_y	= Modulus penampang arah x, y
Ix, Iy	= Momen inersia arah x, y
C_x , C_y	= Jarak dari titik berat ke tepi serat arah x dan y

Ø _b	= Faktor reduksi tahanan lentur
M_n	= Tahanan momem nominal
M_u	= Momen lentur akibat beban terfaktor
M_p	= Tahanan momen plastis
M_r	= Momen batas tekuk
M_{cr}	= Momen kritis terhadap tekuk torsi lateral
Ζ	= Modulus plastis
f_y	= Tegangan leleh
f_r	= Tegangan sisa
f_L	= Tegangan leleh dikurangi tegangan sisa
X_1	= Koefisien untuk perhitungan momen tekuk torsi lateral
X_2	= Koefisien untuk perhitungan momen tekuk torsi lateral
C_b	= Koefisien pengali momen tekuk torsi lateral
G	= Modulus geser baja
S	= Modulus Penampang