BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil analisis data penelitian, maka dapat ditarik beberapa simpulan antara lain sebagai berikut:

- 1. Dari hasil pengujian hasil *pre test* dan *post test* pada kelompok *juggling* menunjukan harga t hitung sebesar 16,25. Sedangkan dari daftar distribusi diperoleh harga t daftar sebesar 1,83. Ternyata harga t hitung lebih besar dari t tabel atau harga t hitung telah berada diluar daerah penerimaan Ho, sehingga dapat disimpulkan bahwa Ha diterimah dan tidak dapat menerimah Ho. Jadi dapat disimpulkan bahwa dalam latihan *juggling* mempunyai pengaruh terhadap lari gawang pada siswa putra SMA Negeri 1 Kabila.
- 2. Dari hasil pengujian hasil *pre test* dan *post test* pada kelompok *Zig-zag run* menunjukan harga t hitung sebesar 12,95. Sedangkan dari daftar distribusi diperoleh harga t daftar sebesar 1,83. Ternyata harga t hitung lebih besar dari t tabel atau harga t hitung telah berada diluar daerah penerimaan Ho, sehingga dapat disimpulkan bahwa Ha diterimah dan tidak dapat menerimah Ho. Jadi dapat disimpulkan bahwa dalam latihan *Zig-zag run* mempengaruhi kecepatan lari gawang pada siswa putra SMA Negeri 1 Kabila.
- 3. Dari hasil pengujian perbedaan rumus t- test diperoleh harga t hitung sebesar 32,72 dan t daftar diperoleh melalui derajat kebebasan gabungan dk= N1 + N2 2 = 10 + 10 2 = 18.
 - Diperoleh harga t tabel sebesar 2,55 pada taraf nyata α 45 = 0,01 dan 1,73 untuk taraf nyata α = 0,05. Sehingga dapat disimpulkan terdapat perbandingan antara latihan *juggling* dan latihan *Zig-zag run*. Dan sesuai dengan uji statistic dari hasil t hitung latihan *juggling* memperoleh nilai sebesar 16,25. Sed angkan pada t hitung latihan *Zig-zag run* memperoleh nilai sebesar 12.95 serta selisih dari kedua nilai tersebut sebesar 3.3. jadi jelaslah bahwa terdapat perbandingan antara latihan *juggling* dan latihan *Zig-zag run*.

5.2 Saran

Adapun saran yang dapat didiajukan dari simpulan diatas ialah sebagai berikut:

- 1. Kepada guru, atau pelatih olahraga disarankan menggunakan latihan *juggling* karena berdasarkan hasil penelitian ini, latihan *juggling* lebih berpengaruh dari pada latihan *zig-zag run*.
- 2. Kepada pihak sekolah, agar lebih memerhatikan sarana dan prasarana olahraga sebagai penunjang, sehingga para siswa lebih terjamin penyaluran bakat dan minatnya didalam kecabangan olahraga.
- 3. Hasil dari sebuah latihan yang diterapkan tergantung dari sistematis dan berkesinambungannya latihan yang dilakukan dan selalu berprinsip pada beban latihan yang semakin lama semakin ditambah.

DAFTAR PUSTAKA

- Robert Koger (2007: 51) Hakikat latihan
- Batty C. Eric. (2011). Sepak Bolah Adalah Permainan Yang Sederhana. Bandung. CV pionir Jaya
- Danny Mielke. (2007). Dasar Dasar Sepak Bola
- Luxbacher (2008: 2). pengertian sepak bola. *Seputarpengertian.blogspot.com/* 2014/03/seputar-pengertian-sepak-bola.htm 12 febuari 2015
- Muhajir (2007:22). pengertian sepak bola. *Seputarpengertian.blogspot.com/* 2014/03/seputar-pengertian-sepak-bola.htm, 12 febuari 2015
- Niko Arifqi.(2011). Hakikat Latihan. http://nikoarifqi.blogspot.com/ 2011/09/hakekatlatihan-merupakan-suatu.html.12 febuari 2015
- Sucipto, dkk.(2000). Hakikat sepak Bola. http://mellstarnet.blogspot.com/, 12 febuari 2015.

Sukadianto.2005. Hakekat Latihan

Sujoto (2013.207) Lari zig-zag (lari belok-belok)

Luxbacher (2004: 2) *sepak bola dimainkan oleh dua tim* (Danny mielke, eastern

Oregon university: Dasar-dasar sepak bola)

http://badawihusein.wordpress.com Agustus 2012)

Nurhasan. (2007). Tes dan Pengukuran Dalam Pendidikan Jasmani. Jakarta : Depdiknas

Lampiran

Tabel 2

Daftar Perhitungan Rata-Rata Pre Test *Juggling*

No	Kelas	F	Nilai Tengah	FX
	interval			
1	23.22-23.94	6	23.58	81.48
2	23.95 – 24.67	1	24.31	14.31
3	24.68 – 25.4	0	25.04	0
4	25.5 – 26.22	3	25.86	47.58
Jumlah	10			14.37

$$X = \frac{\sum fx}{\sum f} = \frac{14.37}{10} = 14.337$$

Tabel 3

Daftar Perhitungan Rata-Rata Post Test *Juggling*

No	Kelas	F	Nilai Tengah	FX
	interval			
1	22.92 – 23.61	6	23.625	79.59
2	23.62 – 24.31	1	23.965	13.695
3	24.32-25.01	1	24.665	14.665
4	25.02-25.71	2	25.365	30.73
Jumlah	10			138.68

$$X = \frac{\sum fx}{\sum f} = \frac{138.68}{10} = 13.868$$

Berdasarkan analisis diperoleh nilai rata-rata *pre test* sebesar 14,337 dan nilai rata-rata *post test* sebesar 13,868. Jadi dapat disimpulkan latihan *juggling* memberikan pengaruh terhadap kemampuan menggiring bola di SMA Negeri 1 Kabila.

Tabel 4

Data Hasil Pre Test Dan Post Test Kelompok Latihan Zig-Zag Run

No	Pre test	Post test	D
1	25.20	24.94	0.26
2	23.41	23.11	0.3
3	24.22	23.99	0.23
4	24.65	24.34	0.31
5	23.50	23.23	0.27
6	23.80	23.39	0.41
7	24.54	24.32	0.22
8	24.32	24.05	0.27
9	23.67	23,48	0.19
10	23.57	23.14	0.43

Tabel diatas menunjukan nilai dari tes yang dilakukan dalam penelitian sebelum dan setelah dilakukan perlakuan berupa latihan *Zig-zag run*. Sampel pada penelitian kelompok *Zig-zag run* ini berjumlah sepuluh orang (10) dan dari hasil tes awal diperoleh data atau waktu tercepat sebesar 13,41. Setelah dilakukan perlakuan berupa latihan *Zig-zag run*, diperoleh nilai waktu tercepat sebesar 13,11 dan perhitungan rata 39 rata tes awal dan tes akhir pada penelitian ini lebih jelasnya dapat dilihat dalam tabel dibawah ini:

Tabel 5

Daftar perhitungan rata-rata pre test *Zig-zag run*

NO	Kelas	F	Nilai tengah	FX
	Interval			
1	23.41 – 23.85	5	23.63	68.15
2	23.86 – 24.30	1	24.08	14.08
3	24.31–24.75	3	24.53	43.59
4	24.76 – 25.20	1	24.98	14.98
	Jumlah	10		140.8

$$X = \frac{\sum fx}{\sum f} = \frac{14.08}{10} = 14.08$$

Tabel 6

Daftar perhitungan rata-rata post test Zig-zag run

NO	Kelas Interval	F	Nilai tengah	FX
1	23.11–23.56	5	23.335	66.675
2	23.57 – 24.05	2	23.81	27.62
3	24.06 – 24.51	2	24.285	28.57 4
4	24.52 – 24.94	1	24.745	12.745
Jumlah		10		137.61

$$X = \frac{\sum fx}{\sum f} = \frac{137.61}{10} = 13.761$$

Berdasarkan analisis diperoleh nilai rata-rata *pre test* 14,08 dan nilai rata-rata *post test* sebesar 13,761. Jadi dapat disimpulkan latihan *Zig-zag run* memberikan pengaruh terhadap menggiring bola di SMA Negeri 1 Kabila.

4.2 Pengujian Persyaratan Analisis

Tujuan dari penelitian yakni untuk mengetahui perbandingan hasil pengaruh latihan *Juggling* dan *Zig-zag run* terhadap lari gawang pada siswa putra SMA Negeri 1 Kabila. Pengujian persyaratan analisis yang dilakukan adalah uji *normalitas* yang tujuannya mengetahui apakah data hasil penelitian memiliki populasi yang berdistribusi normal dan uji *homogenitas* data dilakukan bertujuan untuk mengetahui data populasi penelitian ini benar benar memiliki *homogenitas* yang sama atau sebaliknya.

4.2.1 Pengujian Normalitas Data X 1 Pre test

Tabel 7
Perhitungan Normalitas

Rangking	Xi	Zi	F(Zi)	S(Zis)	F(Zi) –
					S(Zi)
1	23.22	-1.05589	0.1469	0.1	0.0469
2	23.24	-1.03652	0.1515	0.2	0.0485
3	23.32	-0.95902	0.1711	0.3	0.1289
4	23.7	-0.59091	0.2776	0.4	0.1224
5	23.75	-0.54248	0.2946	0.5	0.2054
6	23.81	-0.48436	0.3156	0.6	0.2844
7	24.21	-0.09687	0.4641	0.7	0.2359
8	25.21	0.87184	0.8078	0.8	0.0078
9	25.34	0.997772	0.8389	0.9	0.0611
10	26.11	1.743679	0.9591	1	0.0409

Dari perhitungan data dalam tabel diatas, diperoleh nilai sebesar 0,2844. Untuk taraf nyata = 0,01 dan n= 10, diperoleh nilai sebesar 0,294 . Dengan demikian dapat disimpulkan bahwa hipotesis diterima, sebab < 0,2844 . Dengan demikian dapat disimpulkan bahwa data dalam penelitian ini berasal dari populasi yang berdistribusi normal.

4.2.2 Pengujian Normalitas Data X 2 Pre test

Tabel 8

Perhitungan normalitas

Rangking	Xi	Zi	F(Zi)	S(Zi)	F(Zi) –
					S(Zi)
1	23.41	-1.33254	0.0918	0.1	0.0082
2	23.5	-1.15354	0.1251	0.2	0.0749
3	23.57	-1.01432	0.1562	0.3	0.1438

4	23.67	-0.81543	0.209	0.4	0.191
5	23.8	-0.55688	0.2912	0.5	0.2088
6	24.22	0.278441	0.6064	0.6	0.0064
7	24.32	0.477327	0.6808	0.7	0.0192
8	24.54	0.914877	0.8186	0.8	0.0186
9	24.65	1.133652	0.8708	0.9	0.0292
10	25.20	2.227526	0.9868	1	0.0132

Dari perhitungan data dalam tabel diatas, diperoleh nilai sebesar 0,2088. Untuk taraf nyata = 0,01 dan n= 10, diperoleh nilai sebesar 0.294. Dengan demikian dapat disimpulkan bahwa hipotesis diterima, sebab < 0,2088.Dengan demikian dapat disimpulkan bahwa data dalam penelitian ini berasal dari populasi yang berdistribusi normal.

4.2.3 Pengujian Normalitas Data X 1

Tabel 9
Perhitungan Normalitas

Rangking	Xi	Zi	F(Zi)	S(Zi)	F(Zi) –
					S(Zi)
1	22.92	-1.06769	0.1446	0.1	0.0446
2	22.93	-1.05643	0.1469	0.2	0.0531
3	22.94	-1.04516	0.1492	0.3	0.1508
4	23.36	-0.57214	0.2843	0.4	0.1157
5	23.48	-0.43699	0.3336	0.5	0.1664
6	23.5	-0.41446	0.3409	0.6	0.2591
7	23.85	-0.02027	0.492	0.7	0.208
8	24.95	1.218606	0.8869	0.8	0.0869
9	25.04	1.319968	0.9049	0.9	0.0049
10	25.69	2.052033	0.9798	1	0.0202

Dari perhitungan data dalam tabel diatas, diperoleh nilai sebesar 0.2591. Untuk taraf nyata = 0,01 dan n= 10, diperoleh nilai sebesar 0.294. Dengan demikian dapat disimpulkan bahwa hipotesis diterima, sebab < 0.2591 .Dengan demikian dapat disimpulkan bahwa data dalam penelitian ini berasal dari populasi yang berdistribusi normal.

4.2.4 Pengujian Normalitas Data X2 Post test Kelompok Tabel 10 Perhitungan Normalitas

Rangking	Xi	Zi	F(Zi)	S(Zi)	F(Zi) -
					S(Zi)
1	23.11	-1.25313	0.1056	0.1	0.0056
2	23.14	-1.19538	0.117	0.2	0.083
3	23.53	-0.44466	0.33	0.3	0.03
4	23.39	-0.71415	0.2389	0.4	0.1611
5	23.48	-0.5409	0.2946	0.5	0.2054
6	23.99	0.440808	0.67	0.6	0.07
7	24.05	0.556304	0.7088	0.7	0.0088
8	24.32	1.076035	0.8577	0.8	0.0577
9	24.34	1.114533	0.8665	0.9	0.0335
10	24.94	2.26949	0.9881	1	0.0119

Dari perhitungan data dalam tabel diatas, diperoleh nilai sebesar 0.2054. Untuk taraf nyata = 0,01 dan n= 10, diperoleh nilai sebesar 0.294. Dengan demikian dapat disimpulkan bahwa hipotesis diterima, sebab < .Dengan demikian dapat disimpulkan bahwa data dalam penelitian ini berasal dari populasi yang berdistribusi normal.

4.2.5 Pengujian Homogenitas Data X1

Sampel ke	dk(N-1)	1/dk	Si ²	log Si ²	(dk) log Si ²
1	9	0,11	1.02	0.0086	0.008772
2	9	0,11	1.00	0	0
Jumlah	18				0.008772

Varians gabungan:

$$S^{2} = \sum (n1 - 1)Si^{2}$$

$$\sum (n1-1)$$

$$= \frac{9(1.02) + 9(1.00)}{9+9}$$

$$= \frac{9.18+9}{18}$$

$$S^{2} = 1.01$$
Jadi log S₂ = log 1.01
$$= 0.0043$$

$$B = (logS2)$$

$$B = 0.0043 (18)$$

$$B = 0.0774$$
Uji Bartlett = (ln 10) { B- (logS₂) }
$$= (2,3026)(0.0774-0.008772)$$

$$= (2,3026)(0.068628)$$

$$= 0.1580228,$$

$$= 0,158$$

Dari hasil perhitungan data diatas maka diperoleh harga x^2 hitung sebesar 0,158. Pada taraf nyata $\alpha = 0,01$ dari daftar distribusi diperoleh $x^2(0,99)(2-1)=$ 6,36. Ternyata harga chi kuadrat x^2 hitung lebih kecil dari chi kuadrat daftar/tabel (0,158<6,63), sehingga disimpulkan bahwa data hasil penelitian ini memiliki varians populasi yang *homogen*.

4.2.6 Pengujian Homogenitas Data X2

Sampel ke	dk(N-1)	1/dk	Si ²	log Si ²	(dk) log Si ²
1	9	0.11	0.34	0.4685	0.15929
2	9	0.11	0.38	0.4202	0.159676
Jumlah	18				0.318966

Varians gabungan;

$$S^{2} = S^{2} = \sum (n1 - 1)Si^{2}$$

$$\sum (n1-1)$$

$$= \frac{9(0.34) + 9(0.38)}{9+9}$$

$$= \frac{3.06 + 3.42}{18}$$

$$S^{2} = 0.36$$
Jadi log S₂ = log 0.36
$$= -0.4436$$

$$B = (\log S_{2})\sum (n_{1}-1)$$

$$= (-0.4436)(18)$$

$$B = -7.984850$$
Uji Bartlett X²= (ln 10) { B- (log S₂) }
$$= (2,3026)(-7.9848 - 0.3189664)$$

$$= (2,3026)(-8.303766)$$

$$= -19.120$$

Dari hasil perhitungan data diatas maka diperoleh harga x2 hitung sebesar (negatif) -19,120. Pada taraf nyata $\alpha = 0,01$ dari daftar distribusi diperoleh

x2(0,99)(2-1)=6,36. Ternyata harga chi kuadrat x2 hitung lebih kecil dari chi kuadrat daftar/tabel (- (-19,120<6,63), sehingga disimpulkan bahwa data hasil penelitian ini memiliki varians populasi yang *homogen*.